For each of the following functions, determine whether they…
For each of the following functions, determine whether they are ODD, EVEN or NEITHER. Justify your answer algebraically. NO graphs! f 1 ( x ) = cos ( x 4 + x ) {“version”:”1.1″,”math”:”f_1(x)=\cos(x^4+x)”} f 2 ( x ) = sin ( x 5 ) x {“version”:”1.1″,”math”:”f_2(x)=\dfrac{\sin(x^5)}x”} f 3 ( x ) = sin ( π 2 + x ) {“version”:”1.1″,”math”:”f_3(x)=\sin\biggl(\frac\pi 2+x\biggr)”} f 4 ( x ) = e x + e − x e x − e − x {“version”:”1.1″,”math”:”f_4(x)=\dfrac{e^x+e^{-x}}{e^x-e^{-x}}”} f 5 ( x ) = x − ⌊ x ⌋ − 1 2 , x ≠ 0 , ± 1 , ± 2 , ± 3 , … , {“version”:”1.1″,”math”:”f_5(x)=x -\big\lfloor x \big\rfloor – \frac 12,\ x\ne 0, \pm 1, \pm 2, \pm 3,\ldots,”} where ⌊ x ⌋ = def the largest integer less than or equal to x {“version”:”1.1″,”math”:”\text{where } \big\lfloor x \big\rfloor\overset{\text{def}}=\text{the largest integer less than or equal to } x “}
Read Details