Consider a quantum universe to be composed of a system qubit…
Consider a quantum universe to be composed of a system qubit labeled `s’ and a three level quantum environment labeled by ‘e’, i.e. environment state space has three levels (|0⟩e{“version”:”1.1″,”math”:”\(\vert 0 \rangle_{e}\)”}, |1⟩e{“version”:”1.1″,”math”:”\(\vert 1 \rangle_{e}\)”}, |2⟩e{“version”:”1.1″,”math”:”\(\vert 2 \rangle_{e}\)”}). Let the quantum state of the universe be |ψ⟩=12[|0⟩s|0⟩e+|0⟩s|2⟩e−|1⟩s|0⟩e−|1⟩s|2⟩e]{“version”:”1.1″,”math”:”\(\vert \psi \rangle = \dfrac{1}{2} \left[ \vert 0 \rangle_{s} \vert 0 \rangle_{e} + \vert 0 \rangle_{s} \vert 2 \rangle_{e} – \vert 1 \rangle_{s} \vert 0 \rangle_{e} – \vert 1 \rangle_{s} \vert 2 \rangle_{e} \right]\)”}. What is the effective density matrix describing the system qubit ρsys{“version”:”1.1″,”math”:”\(\rho_{sys}\)”} (can be obtained by taking partial trace over the environment)?
Read Details