Consider the following statement: 9+14+19+80+…+(5n+4)=n2(5…
Consider the following statement: 9+14+19+80+…+(5n+4)=n2(5n+13){math:9+14+19+80+…+(5n+4)=n2(5n+13)}Given the following possible steps for proof by math induction: Show 9+14+19+80+…+(5(n+1)+4)=(n+1)2(5(n+1)+13){math:9+14+19+80+…+(5(n+1)+4)=(n+1)2(5(n+1)+13)} must be true. Show 9+14+19+80+…+(5n+4)=n2(5n+13){math:9+14+19+80+…+(5n+4)=n2(5n+13)} must be a natural number. Suppose 9+14+19+80+…+(5n+4)=n2(5n+13){math:9+14+19+80+…+(5n+4)=n2(5n+13)} is true. Using logical deduction show 9+14+19+80+…+(5n+4)=n2(5n+13){math:9+14+19+80+…+(5n+4)=n2(5n+13)} must be true. Show 9+14+19+80+…+(5n+4)=n2(5n+13){math:9+14+19+80+…+(5n+4)=n2(5n+13)} must be positive. Show 9+14+19+80+…+(5n+4)=n2(5n+13){math:9+14+19+80+…+(5n+4)=n2(5n+13)} holds for n=1 . Indicate which of the following orders best provides a proof by math induction:
Read Details